Skip to main content
Skip to main content
Edit this page

How to query Parquet files

A lot of the world's data lives in Amazon S3 buckets. In this guide, we'll learn how to query that data using chDB.

Setup

Let's first create a virtual environment:

python -m venv .venv
source .venv/bin/activate

And now we'll install chDB. Make sure you have version 2.0.2 or higher:

pip install "chdb>=2.0.2"

And now we're going to install IPython:

pip install ipython

We're going to use ipython to run the commands in the rest of the guide, which you can launch by running:

ipython

You can also use the code in a Python script or in your favorite notebook.

Exploring Parquet metadata

We're going to explore a Parquet file from the Amazon reviews dataset. But first, let's install chDB:

import chdb

When querying Parquet files, we can use the ParquetMetadata input format to have it return Parquet metadata rather than the content of the file. Let's use the DESCRIBE clause to see the fields returned when we use this format:

query = """
DESCRIBE s3(
  'https://datasets-documentation.s3.eu-west-3.amazonaws.com/amazon_reviews/amazon_reviews_2015.snappy.parquet', 
  ParquetMetadata
)
SETTINGS describe_compact_output=1
"""

chdb.query(query, 'TabSeparated')
num_columns     UInt64
num_rows        UInt64
num_row_groups  UInt64
format_version  String
metadata_size   UInt64
total_uncompressed_size UInt64
total_compressed_size   UInt64
columns Array(Tuple(name String, path String, max_definition_level UInt64, max_repetition_level UInt64, physical_type String, logical_type String, compression String, total_uncompressed_size UInt64, total_compressed_size UInt64, space_saved String, encodings Array(String)))
row_groups      Array(Tuple(num_columns UInt64, num_rows UInt64, total_uncompressed_size UInt64, total_compressed_size UInt64, columns Array(Tuple(name String, path String, total_compressed_size UInt64, total_uncompressed_size UInt64, have_statistics Bool, statistics Tuple(num_values Nullable(UInt64), null_count Nullable(UInt64), distinct_count Nullable(UInt64), min Nullable(String), max Nullable(String))))))

Let's have now have a look at the metadata for this file. columns and row_groups both contain arrays of tuples containing many properties, so we'll exclude those for now.

query = """
SELECT * EXCEPT(columns, row_groups)
FROM s3(
  'https://datasets-documentation.s3.eu-west-3.amazonaws.com/amazon_reviews/amazon_reviews_2015.snappy.parquet', 
  ParquetMetadata
)
"""

chdb.query(query, 'Vertical')
Row 1:
──────
num_columns:             15
num_rows:                41905631
num_row_groups:          42
format_version:          2.6
metadata_size:           79730
total_uncompressed_size: 14615827169
total_compressed_size:   9272262304

From this output, we learn that this Parquet file has over 40 million rows, split across 42 row groups, with 15 columns of data per row. A row group is a logical horizontal partitioning of the data into rows. Each row group has associated metadata and querying tools can make use of that metadata to efficiently query the file.

Let's take a look at one of the row groups:

query = """
WITH rowGroups AS (
    SELECT rg
    FROM s3(
    'https://datasets-documentation.s3.eu-west-3.amazonaws.com/amazon_reviews/amazon_reviews_2015.snappy.parquet',
    ParquetMetadata
    )
    ARRAY JOIN row_groups AS rg
    LIMIT 1
)
SELECT tupleElement(c, 'name') AS name, tupleElement(c, 'total_compressed_size') AS total_compressed_size, 
       tupleElement(c, 'total_uncompressed_size') AS total_uncompressed_size,
       tupleElement(tupleElement(c, 'statistics'), 'min') AS min,
       tupleElement(tupleElement(c, 'statistics'), 'max') AS max
FROM rowGroups
ARRAY JOIN tupleElement(rg, 'columns') AS c
"""

chdb.query(query, 'DataFrame')
                 name  total_compressed_size  total_uncompressed_size                                                min                                                max
0         review_date                    493                      646                                              16455                                              16472
1         marketplace                     66                       64                                                 US                                                 US
2         customer_id                5207967                  7997207                                              10049                                           53096413
3           review_id               14748425                 17991290                                     R10004U8OQDOGE                                      RZZZUTBAV1RYI
4          product_id                8003456                 13969668                                         0000032050                                         BT00DDVMVQ
5      product_parent                5758251                  7974737                                                645                                          999999730
6       product_title               41068525                 63355320  ! Small S 1pc Black 1pc Navy (Blue) Replacemen...                            🌴 Vacation On The Beach
7    product_category                   1726                     1815                                            Apparel                                       Pet Products
8         star_rating                 369036                   374046                                                  1                                                  5
9       helpful_votes                 538940                  1022990                                                  0                                               3440
10        total_votes                 610902                  1080520                                                  0                                               3619
11               vine                  11426                   125999                                                  0                                                  1
12  verified_purchase                 102634                   125999                                                  0                                                  1
13    review_headline               16538189                 27634740                                                     🤹🏽‍♂️🎤Great product. Practice makes perfect. D...
14        review_body              145886383                232457911                                                                                              🚅 +🐧=💥 😀

Querying Parquet files

Next, let's query the contents of the file. We can do this by adjusting the above query to remove ParquetMetadata and then, say, compute the most popular star_rating across all reviews:

query = """
SELECT star_rating, count() AS count, formatReadableQuantity(count)
FROM s3(
  'https://datasets-documentation.s3.eu-west-3.amazonaws.com/amazon_reviews/amazon_reviews_2015.snappy.parquet'
)
GROUP BY ALL
ORDER BY star_rating
"""

chdb.query(query, 'DataFrame')
   star_rating     count formatReadableQuantity(count())
0            1   3253070                    3.25 million
1            2   1865322                    1.87 million
2            3   3130345                    3.13 million
3            4   6578230                    6.58 million
4            5  27078664                   27.08 million

Interestingly, there are more 5 star reviews than all the other ratings combined! It looks like people like the products on Amazon or, if they don't, they just don't submit a rating.